
COMP 110/L Lecture 7

Maryam Jalali

Some slides adapted from Dr. Kyle Dewey

Outline

• Introduction to objects

• Constructors and new

• Instance variables

• Instance methods

• static vs. non-static

Object-Oriented
Programming

What is an Object?

• On the most fundamental level,
the way we represent these
objects and how we use them is
defined in the classes.
These classes are blueprints for
the objects that we want to
create.

Real-world objects
has 2 characteristics

1 - State 2 – Behavior
(Something the

dog does)
int Breed
String Age
String Color Bark()

Variables (Fields) Methods (Functions)

Object Oriented Programming

• From this class blueprint we can create several
different type of dogs.

Breed: “German Shepherd”
Age: 3

Color: Brown

Dog A
Breed: “Golden Retriever”

Age: 5
Color: Yellow

Dog B

Dog A and Dog B: Instances of Dog

• Dog A and Dog B have a breed, age,
and color, but the value of theses
different attributes are different.

• Each dog can call the bark method

• Dog A and Dog B are instances of the
Dog class

Example

Class: Human Object: Man, Woman, Child

Class Fruit Object: Apple, Banana, Mango

Class: Mobile Phone Object: iPhone, X Samsung S10

Class: Food Object: Pizza, Burger, Rice

What is Class?
A class is the blueprint which individual objects are created.
Allows you to define your own “user-defined” object.

In real-world car is an object and will have 2 characteristics.

1 - State 2 - Behavior

Size
Color
Make
Model

Move
Accelerate
Turn
Reverse
Shift

Variables (Fields) Methods (Functions)

In Programming

Variables (state)

Methods (behavior)

Example

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: Student

String firstName
String lastName

double gpa

public class Student {

String firstName;
String lastName;
double gpa;

public String toString() {

return lastName+ " , " + firstName;

}

}

Class Definition

public class Student {

}

Class Definition

fields

methods

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

faucet object

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

faucet object pot object

Basic Idea

faucet object pot object

The world is composed of objects
which interact with each other in well-defined ways

Example: boiling water

Interaction:
fill with water

Basic Idea

pot objectfaucet object

The world is composed of objects
which interact with each other in well-defined ways

Example: boiling water

Interaction:
fill with water

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

pot object

Basic Idea

pot object

stove object

The world is composed of objects
which interact with each other in well-defined ways

Example: boiling water

Interaction:
Place on top of

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

stove object

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

Interaction:
Turn on burner

stove object

Creating Objects
In Java, we first need a class to make an object.

A class serves as a blueprint/template for an object.

Creating Objects
In Java, we first need a class to make an object.

A class serves as a blueprint/template for an object.

Stove Class

Creating Objects
In Java, we first need a class to make an object.

A class serves as a blueprint/template for an object.

Stove Class

Stove object Stove object Stove object
-The same class can be used to make different stoves
-These stoves can be different from each other, perhaps even radically different. It all
depends on exactly how the class is defined.

public class
Declares a class, and gives it

public visibility (more on that later in the course)

public class
Declares a class, and gives it

public visibility (more on that later in the course)

public class Table {
...

}

Constructors

Constructors

• A way to initialize the object's member variables.

• Code executed upon object creation

• Effectively create the object

• Looks like a method, but no return type (not even
void) and has the same name as the class

Constructors
• Code executed upon object creation

• Effectively create the object

• Looks like a method, but no return type
(not even void) and has the same name as
the class

public class Table {
public Table() {

System.out.println(
“Creating table...”);

}
}

Constructors
• Code executed upon object creation

• Effectively create the object

• Looks like a method, but no return type
(not even void) and has the same name as
the class

Constructor
public class Table {

public Table() {
System.out.println(

“Creating table...”);
}

}

Executing Constructors
new executes a given constructor,

creating a new object in the process.

Executing Constructors
new executes a given constructor,

creating a new object in the process.

Table t = new Table();

Example:
Table.java

Constructor Parameters
Just like methods, constructors can take parameters

Constructor Parameters
Just like methods, constructors can take parameters

public class ConsParam {
public ConsParam(String str) {

System.out.println(str);
}

}

Constructor Parameters
Just like methods, constructors can take parameters

public class ConsParam {
public ConsParam(String str) {

System.out.println(str);
}

}

ConsParam p = new ConsParam(“hi”);

Example:
ConsParam.java

InstanceVariables

InstanceVariables
Declared in the class.

Each object created from a class (hereafter referred to as
an instance) has its own instance variables.

InstanceVariables
Declared in the class.

Each object created from a class (hereafter referred to as
an instance) has its own instance variables.

public
int

class
myInt;

HasInstance
// instance

{
variable

...
}

InstanceVariables
Declared in the class.

Each object created from a class (hereafter referred to as
an instance) has its own instance variables.

public class HasInstance {
int myInt; // instance variable
public HasInstance(int setInt) {
myInt = setInt;

}
}

public class HasInstance {
int myInt; // instance variable
public HasInstance(int setInt) {
myInt = setInt;

}
}

public class HasInstance {
int myInt; // instance variable
public HasInstance(int setInt) {
myInt = setInt;

}
}

HasInstance a = new HasInstance(7);

public class HasInstance {
int myInt; // instance variable
public HasInstance(int setInt) {

myInt = setInt;
}

}

HasInstance a = new HasInstance(7);
HasInstance b = new HasInstance(8);

public class HasInstance {
int myInt; // instance variable
public HasInstance(int setInt) {

myInt = setInt;
}

}

HasInstance a = new HasInstance(7);
HasInstance b = new HasInstance(8);

HasInstance

myInt: 7

a:

public class HasInstance {
int myInt; // instance variable
public HasInstance(int setInt) {

myInt = setInt;
}

}

HasInstance a = new HasInstance(7);
HasInstance b = new HasInstance(8);

HasInstance

myInt: 7

a: HasInstance b:

myInt: 8

Example:
HasInstance.java

Instance Methods

Instance Methods

• Define which interactions can occur
between objects

• Declared in the class

• Specific to objects created from the class
(instances), and operate over instance
variables.

public class HasInstance {
int myInt; // instance variable
public HasInstance(int setInt) {
myInt = setInt;

}
}

-To show an example, let’s take the HasInstance definition from before...

public class HasInstance2 {
int myInt; // instance variable
public HasInstance2(int setInt) {
myInt = setInt;

}

public void printInt() {
System.out.println(myInt);

}
}

-...and now we add the printInt instance method
-The name of the class has also been changed, just so we can have both examples in two
separate files (namely HasInstance.java and HasInstance2.java)

Example:
HasInstance2.java

static
Associates something with the class itself,

as opposed to individual objects created from the class.

static
Associates something with the class itself,

as opposed to individual objects created from the class.

public class MyClass {
public static void
main(String[] args) {
...

}
}

-You’ve been defining main and all your methods this way the entire time
-Java forces all source code to be in classes, so this is unavoidable. However, we haven’t
really gotten into proper objects yet.

static vs. non-static
With static: associated with the class.

Without static: associated with objects
created from the class.

static vs. non-static
With static: associated with the class.

Without static: associated with objects
created from the class.

public class MyClass {
public static void
main(String[] args) {

...
}

}

static vs. non-static
With static: associated with the class.

Without static: associated with objects
created from the class.

public class MyClass {
public static void
main(String[] args) {

...
}

}

With class
MyClass

static vs. non-static
With static: associated with the class.

Without static: associated with objects
created from the class.

public class MyClass {
public static void
main(String[] args) {

...
}

}

public class MyClassTest {
@Test
public void someTest() {...}

}

With class
MyClass

static vs. non-static
With static: associated with the class.

Without static: associated with objects
created from the class.

public class MyClass {
public static void
main(String[] args) {

...
}

}

With objects created from MyClassTest
public class MyClassTest {
@Test
public void someTest() {...}

}

With class
MyClass

Stove Example in Java

•Water.java

•Faucet.java

•Pot.java

•Stove.java

•BoilingWater.java

